Selasa, 06 Desember 2011

TEORI HELIOSENTRIS

Heliosentris : Copernicus dan Kepler
Disusun oleh:
SIGIT RAHMAN SUGANDI 1002533
Konsep
Pada umumnya bangsa Yunani dan orang-orang yang hidup pada abad pertengahan memiliki pegangan yang kuat sebagai pandangan mereka tentang alam semesta, yaitu teori geosentris (Bumi sebagai pusat). Menurut teori ini, Bumi sebagai pusat alam semesta berada dalam keadaan diam dan planet-planet, Matahari, serta benda-benda langit lainnya bergerak mengitarinya. Gerak semu (apparent motions) planet, bulan, dan matahari relatif terhadap bintang dan terhadap satu sama lain dijelaskan secara lengkap dalam teori geosentris Hipparchus yang dikembangkan sekitar tahun 140 sebelum masehi. Namun teori geosentris memiliki kelemahan yaitu sulitnya menjelaskan fenomena retrogresi (gerak balik) periodik dari planet. Fenomena retrogresi diakibatkan karena lintasan semu planet sepanjang tahun relatif terhadap bintang-bintang adalah berupa lengkungan (kurva) yang tidak rata. Malahan, adakalanya planet-planet teramati seolah-olah bergerak mundur (berbalik) sebelum akhirnya bergerak maju kembali selama periode orbitnya. Akhirnya pada tahun 1543 teori geosentris dipatahkan oleh teori heliosentris yang diajukan oleh Nicolaus Copernicus. Dalam teori heliosentris, mataharilah sebagai pusat tata surya. Matahari dikelilingi oleh planet-planet, asteroid, komet, dan meteorid.
Dalam model heliosentris Copernicus, Matahari dianggap berada pada pusat alam semesta, bintang-bintang terletak pada bulatan angkasa dan berputar mengelilingi Matahari. Diantara Bintang-bintang dan Matahari terdapat planet-planet termasuk Bumi yang berputar mengelilingi Matahari dalam masing-masing orbitnya dengan lintasan orbit berbentuk lingkaran. Gerak mundur semu dalam peredaran planet-planet yang sulit dijelaskan oleh model geosentris, dapat dijelaskan dengan mudah dalam model heliosentris, dengan menggunakan konsep gerak relatif antara Bumi dan planet-planet lain yang bergerak disekitar Matahari dengan kecepatan sudut putar yang berbeda-beda. Namun model heliosentris Copernicus memiliki beberapa kelemahan, yaitu bintang-bintang tidak berputar mengelilingi matahari dan planet-planet tidak bergerak mengelilingi matahari dengan lintasan yang berupa lingkaran. Selanjutnya model ini disempurnakan oleh Johannes Kepler, dan melahirkan hukum 1 Kepler, hukum II Kepler, dan hukum III Kepler.

Cara kerja konsep Heliosentris
Konsep heliosentris melahirkan hukum-hukum yang dicetuskan oleh Johannes Kepler, yaitu:
Hukum I Kepler

Persamaan elips dari hukum pertama Kepler dirumuskan seperti berikut :

dimana e adalah eksentrisitas yang merupakan perbandingan antara jarak dua fokus dengan diameter panjang elips. Nilai eksentrisitas menentukan bentuk elips apakah makin lonjong atau makin mendekati bentuk lingkaran. Jika e = 0, maka orbit planet akan berupa lingkaran. Eksentrisitas bumi, ebumi = 0,017, hampir mendekati nol, jadi orbit bumi hampir mendekati lingkaran. Akibat lintasan orbit planet berbentuk elips, maka selama suatu planet bergerak mengelilingi matahari menempuh satu putaran penuh yang disebut satu tahun pleneter, jarak antara planet tersebut dengan Matahari akan selalu berubah-ubah. Titik pada lintasan orbit planet yang menandai posisi paling dekat planet ke Matahari disebut perihelium. Sedangkan titik pada lintasan orbit Planet yang menandai posisi paling jauh Planet ke Matahari disebut aphelium. Arah rotasi planet-planet dalam arah berlawanan dengan arah putar jarum jam, kecuali untuk planet Venus dan Uranus. Para astronom menetapkan arah putar berlawanan dengan arah putar jarum jam sebagai gerak langsung (direct), sedangkan arah putar searah dengan arah putaran jarum jam disebut gerak balik (retroge).

Hukum II Kepler
Hukum kedua Kepler yang disebut juga sebagai hukum kesamaan luas yang dipublikasikan pada tahun 1609, menyatakan bahwa luas (S) yang disapu oleh garis penghubung antara planet dan Matahari dalam selang waktu (t) yang sama adalah sama (S1 = S2 = S3), seperti ditunjukkan pada gambar.

Hukum ini secara tidak langsung menyatakan bahwa kecepatan orbit suatu Planet mengitari matahari tidaklah konstan (uniform) melainkan berubah-ubah. Planet akan bergerak lebih cepat dalam orbitnya ketika berada pada daerah yang dekat dengan matahari, dan akan bergerak lebih lambat dalam orbitnya ketika berada pada daerah yang jauh dari matahari. Kecepatan orbit Planet berbanding terbalik dengan jaraknya terhadap matahari. Dalam notasi matematis , hukum ini dapat dirumuskan sebagai:

dengan C adalah konstanta. Persamaan ini dapat dibaca laju perubahan luas yang disapu garis penghubung planet-Matahari terhadap waktu adalah tetap, S1 = S2 = S3. Hukum kesamaan luas ini terbentuk sebagai konsekuensi dari adanya kekekalan momentum sudut dari planet-planet ketika berputar mengelilingi Matahari. Jika momentum sudut suatu planet yang mengitari matahari adalah kekal, maka planet harus bergerak lebih cepat bila dekat dengan matahari, dan bergerak lebih lambat jika berada jauh dari Matahari. Planet-planet yang berputar mengelilingi Matahari memiliki momentum sudut yang tetap, karena tidak ada gaya yang bekerja dalam arah geraknya. Gaya tarik matahari arahnya membentuk sudut 〖90〗^o terhadap arah gerak Planet

Hukum III Kepler.
Hukum ketiga Kepler yang disebut juga sebagai hukum harmonik yang dipublikasikan pada tahun 1618, menyatakan bahwa perbandingan kuadrat periode revolusi (T2) terhadap pangkat tiga dari jarak rata-rata planet ke Matahari (jari-jari elips = R3) adalah sama untuk semua planet. Secara matematika, pernyataan tersebut dapat dirumuskan seperti berikut :

Disini C adalah suatu konstanta yang memiliki nilai yang sama untuk semua Planet. Hukum ini secara eksplisit menyatakan hubungan antara periode revolusi suatu Planet dengan jaraknya terhadap matahari. Makin jauh jarak Planet ke matahari (makin besar diameter orbit Planet), makin lama periode revolusinya. Planet yang memiliki diameter orbit paling kecil adalah Merkurius dan yang paling besar adalah Pluto. Jika Bumi dijadikan sebagai acuan, dimana jarak antara Bumi dan Matahari adalah sekitar 150 x 106 km yang disebut sebagai 1 SA, dan periode revolusi Bumi adalah 1 tahun, maka konstanta C = 1, dan persamaan hukum ketiga Kepler menjadi :

disini R adalah jarak rata-rata Planet ke Matahari dalam satuan SA dan T adalah periode revolusi planet dalam satuan tahun. Jarak rata-rata setiap Planet ke Matahari dan periode revolusinya dirangkumkan dalam tabel.

Tokoh yang mengembangkan.
Seperti yang sebagian telah dijelaskan di atas, ternyata teori ini sangat panjang sejarahnya hingga menemukan hukum-hukum yang sesuai dengan teori heliosentrik.
Nicolaus Copernicus (1473-1543) merupakan orang pertama yang secara terang-terangan menyatakan bahwa Matahari merupakan pusat sistem Tata Surya, dan Bumi bergerak mengeliinginya dalam orbit lingkaran. Untuk masalah orbit, data yang didapat Copernicus memperlihatkan adanya indikasi penyimpangan kecepatan sudut orbit planet-planet. Namun ia mempertahankan bentuk orbit lingkaran dengan menyatakan bahwa orbitnya tidak kosentrik. Teori heliosentrik disampaikan Copernicus dalam publikasinya yang berjudul De Revolutionibus Orbium Coelestiumkepada Paus Pope III dan diterima oleh gereja.
Tapi dikemudian hari setelah kematian Copernicus pandangan gereja berubah ketika pada akhir abad ke-16 filsuf Italy, Giordano Bruno, menyatakan semua bintang mirip dengan Matahari dan masing-masing memiliki sistem planetnya yang dihuni oleh jenis manusia yang berbeda. Pandangan inilah yang menyebabkan ia dibakar dan teori Heliosentrik dianggap berbahaya karena bertentangan dengan pandangan gereja yang menganggap manusialah yang menjadi sentral di alam semesta. Walaupun Copernicus telah menerbitkan tulisannya tentang Teori Heliosentrik, tidak semua orang setuju dengannya. Salah satunya, Tycho Brahe (1546-1601) dari Denmark yang mendukung teori matahari dan bulan mengelilingi bumi sementara planet lainnya mengelilingi matahari. Tahun 1576, Brahe membangun sebuah observatorium di pulau Hven, di laut Baltic dan melakukan penelitian disana sampai kemudian ia pindah ke Prague pada tahun 1596.
Di Prague, Brahe menghabiskan sisa hidupnya menyelesaikan tabel gerak planet dengan bantuan asistennya Johannes Kepler (1571-1630). Setelah kematian Brahe, Kepler menelaah data yang ditinggalkan Brahe dan menemukan bahwa orbit planet tidak sirkular melainkan elliptik.
Kepler kemudian mengeluarkan tiga hukum gerak orbit yang dikenal sampai saat ini yaitu :
Planet bergerak dalam orbit ellips mengelilingi matahari sebagai pusat sistem.
Radius vektor menyapu luas yang sama dalam interval waktu yang sama.
Kuadrat kala edar planet mengelilingi matahari sebanding dengan pangkat tiga jarak rata-rata dari matahari.
Kepler menuliskan pekerjaannya dalam sejumlah buku, diantaranya adalah Epitome of The Copernican Astronomy dan segera menjadi bagian dari daftar Index Librorum Prohibitorum yang merupakan buku terlarang bagi umat Katolik. Dalam daftar ini juga terdapat publikasi Copernicus, De Revolutionibus Orbium Coelestium.

Aplikasi teori Heliosentrik
Secara langsung teori heliosentrik dapat diaplikasikan dalam pembuatan kalender masehi (kalender matahari) yang dipakai kita saat ini, kalender matahari dibuat berdasarkan perhitungan bumi berevolusi mengelilingi matahari. Secara tidak langsung juga teori heliosentrik dipakai dalam pengembangan beberapa hal seperti dibawah ini :


Awal mula dipakainya teleskop
Pada tahun 1608, teleskop dibuat oleh Galileo Galilei (1562-1642), .Galileo merupakan seorang professor matematika di Pisa yang tertarik dengan mekanika khususnya tentang gerak planet. Ia salah satu yang tertarik dengan publikasi Kepler dan yakin tentang teori heliosentrik. Dengan teleskopnya, Galileo berhasil menemukan satelit-satelit Galilean di Jupiter dan menjadi orang pertama yang melihat keberadaan cincin di Saturnus.
Salah satu pengamatan penting yang meyakinkannya mengenai teori heliosentrik adalah masalah fasa Venus. Berdasarkan teori geosentrik, Ptolemy menyatakan venus berada dekat dengan titik diantara matahari dan bumi sehingga pengamat dari bumi hanya bisa melihat venus saat mengalami fasa sabit.
Tapi berdasarkan teori heliosentrik dan didukung pengamatan Galileo, semua fasa Venus bisa terlihat bahkan ditemukan juga sudut piringan venus lebih besar saat fasa sabit dibanding saat purnama. Publikasi Galileo yang memuat pemikirannya tentang teori geosentrik vs heliosentrik, Dialogue of The Two Chief World System, menyebabkan dirinya dijadikan tahanan rumah dan dianggap sebagai penentang oleh gereja.

Dasar yang diletakkan Newton
Di tahun kematian Galileo, Isaac Newton (1642-1727) dilahirkan. Bisa dikatakan Newton memberi dasar bagi pekerjaannya dan orang-orang sebelum dirinya terutama mengenai asal mula Tata Surya. Ia menyusun Hukum Gerak Newton dan kontribusi terbesarnya bagi Astronomi adalah Hukum Gravitasi yang membuktikan bahwa gaya antara dua benda sebanding dengan massa masing-masing objek dan berbanding terbalik dengan kuadrat jarak antara kedua benda. Hukum Gravitasi Newton memberi penjelasan fisis bagi Hukum Kepler yang ditemukan sebelumnya berdasarkan hasil pengamatan. Hasil pekerjaannya dipublikasikan dalamPrincipia yang ia tulis selama 15 tahun.
Teori Newton menjadi dasar bagi berbagai teori pembentukan Tata Surya yang lahir kemudian, sampai dengan tahun 1960 termasuk didalamnya teori monistik dan teori dualistik. Teori monistik menyatakan bahwa matahari dan planet berasal dari materi yang sama. Sedangkan teori dualistik menyatakan matahari dan bumi berasal dari sumber materi yang berbeda dan terbetuk pada waktu yang berbeda.
Daftar Pustaka
Nasution, Ismail Hakim. (2010). Geosrntris dan Heliosentris.[online].Bin Hakim. Tersedia: http://www.binhakim.com/2011/07/geosentris-dan-heliosentris.html [20 Nopember2011]
Suhandi, Andi.(2010). Tata Surya.[online]. Tersedia: http ://file.upi.edu/Direktori/DUAL-MODES/KONSEP_DASAR_BUMI_ANTARIKSA_UNTUK_SD/BBM_6.pdf [21Nopember2011]
Puspita, Melisa. Heliosentrik dan Gereja.[online]. Tersedia: http://melisa07.blogspot.com/2010/12/teori-heliosentrik-dan-gereja.html[22 Nopember 2011]

1 komentar: